Discovery of the first high mass X-ray binary in the Taruntula Nebula

17 Mar
Mark A. Garlic /  space-art.co.uk
Artist impression of a Be-X-ray binary: Mark A. Garlic / space-art.co.uk

The bright star VFTS 399 turned out to be more interesting than its not-so-catchy name suggests. While classified as “apparent single star”, it stood out by its rapid rotation and, as turned out when inspecting data from the Chandra Satellite, by its  exceptionally bright in X-rays.  In this paper lead by Simon Clark, we conclude this VFTS399 is most likely the secondary star in a binary system.  It is about 20 times more massive than the sun, rapidly rotating and probably shedding material from its equator by the centrifugal effect.  Its companion star is now gone and left a neutron star when it exploded as a supernova.  The neutron star appears to be the second pulsar in this region. The other neutron star is about 200 light years away.

The VLT-FLAMES Tarantula survey XX. The nature of the X-ray bright emission line star VFTS 399,  Clark et al. 2015, accepted for publication in Astronomy and Astrophysics, http://arxiv.org/abs/1503.00930

Discovery of nine runaway stars with strange rotation rates

20 Feb

Screen Shot 2015-02-20 at 1.07.24 PMEvans et al. investigated the nearly 300  B-type stars in the Tarantula nebula measuring their velocities toward and away from us using the Doppler effect.  Nine stars have extreme velocities and are candidate runaway stars. 

They appear to have strange rotation rates: either they spin very very fast or very slow.  The most extreme case is star VFTS 358, which is moving at 100 km/s. It is a very rapid rotator and shows peculiar surface chemistry.  This is very suggestive of the so-called “binary ejection scenario”.  Likely, the star was member of a close binary where it was enriched and spun up by its companion star. When the companion died (in a supernova explosion), star VFTS 358 was ejected, now flying through space all by it self.

The VLT-FLAMES Tarantula Survey XVIII. Classifications and radial velocities of the B-type stars, C. J. Evans, et al. A&A, 574, A13, 2015 http://adsabs.harvard.edu/abs/2015A%26A…574A..13E

 

News: Marie Curie Grant

5 Feb

EU_logoVery good news, the European Commission decided to support part of our research for the next two years through a Marie Skłodowska-Curie Research Fellowship.